Macros

Macros

Many assemblers support predefined macros, and others support programmer-defined (and repeatedly re-definable) macros involving sequences of text lines in which variables and constants are embedded. This sequence of text lines may include opcodes or directives. Once a macro has been defined its name may be used in place of a mnemonic. When the assembler processes such a statement, it replaces the statement with the text lines associated with that macro, then processes them as if they existed in the source code file (including, in some assemblers, expansion of any macros existing in the replacement text).

Note that this definition of “macro” is slightly different from the use of the term in other contexts, like the C programming language. C macros created through the #define directive typically are just one line, or a few lines at most. Assembler macro instructions can be lengthy “programs” by themselves, executed by interpretation by the assembler during assembly.

Since macros can have ‘short’ names but expand to several or indeed many lines of code, they can be used to make assembly language programs appear to be far shorter, requiring fewer lines of source code, as with higher level languages. They can also be used to add higher levels of structure to assembly programs, optionally introduce embedded debugging code via parameters and other similar features.

Macro assemblers often allow macros to take parameters. Some assemblers include quite sophisticated macro languages, incorporating such high-level language elements as optional parameters, symbolic variables, conditionals, string manipulation, and arithmetic operations, all usable during the execution of a given macro, and allowing macros to save context or exchange information. Thus a macro might generate a large number of assembly language instructions or data definitions, based on the macro arguments. This could be used to generate record-style data structures or “unrolled” loops, for example, or could generate entire algorithms based on complex parameters. An organization using assembly language that has been heavily extended using such a macro suite can be considered to be working in a higher-level language, since such programmers are not working with a computer’s lowest-level conceptual elements.

Macros were used to customize large scale software systems for specific customers in the mainframe era and were also used by customer personnel to satisfy their employers’ needs by making specific versions of manufacturer operating systems. This was done, for example, by systems programmers working with IBM’s Conversational Monitor System / Virtual Machine (VM/CMS) and with IBM’s “real time transaction processing” add-ons, Customer Information Control System CICS, and ACP/TPF, the airline/financial system that began in the 1970s and still runs many large computer reservations systems (CRS) and credit card systems today.

It was also possible to use solely the macro processing abilities of an assembler to generate code written in completely different languages, for example, to generate a version of a program in COBOL using a pure macro assembler program containing lines of COBOL code inside assembly time operators instructing the assembler to generate arbitrary code.

This was because, as was realized in the 1960s, the concept of “macro processing” is independent of the concept of “assembly”, the former being in modern terms more word processing, text processing, than generating object code. The concept of macro processing appeared, and appears, in the C programming language, which supports “preprocessor instructions” to set variables, and make conditional tests on their values. Note that unlike certain previous macro processors inside assemblers, the C preprocessor was not Turing-complete because it lacked the ability to either loop or “go to”, the latter allowing programs to loop.

Despite the power of macro processing, it fell into disuse in many high level languages (major exceptions being C/C++ and PL/I) while remaining a perennial for assemblers.

Macro parameter substitution is strictly by name: at macro processing time, the value of a parameter is textually substituted for its name. The most famous class of bugs resulting was the use of a parameter that itself was an expression and not a simple name when the macro writer expected a name. In the macro: foo: macro a load a*b the intention was that the caller would provide the name of a variable, and the “global” variable or constant b would be used to multiply “a”. If foo is called with the parameter a-c, the macro expansion of load a-c*b occurs. To avoid any possible ambiguity, users of macro processors can parenthesize formal parameters inside macro definitions, or callers can parenthesize the input parameters.

 

You may also like...