Assembly directives

image_pdfimage_print

Assembly directives

Assembly directives, also called pseudo-opcodes, pseudo-operations or pseudo-ops, are instructions that are executed by an assembler at assembly time, not by a CPU at run time. The names of pseudo-ops often start with a dot to distinguish them from machine instructions. Pseudo-ops can make the assembly of the program dependent on parameters input by a programmer, so that one program can be assembled different ways, perhaps for different applications. Or, a pseudo-op can be used to manipulate presentation of a program to make it easier to read and maintain. Another common use of pseudo-ops is to reserve storage areas for run-time data and optionally initialize their contents to known values.

Symbolic assemblers let programmers associate arbitrary names (labels or symbols) with memory locations and various constants. Usually, every constant and variable is given a name so instructions can reference those locations by name, thus promoting self-documenting code. In executable code, the name of each subroutine is associated with its entry point, so any calls to a subroutine can use its name. Inside subroutines, GOTO destinations are given labels. Some assemblers support local symbols which are lexically distinct from normal symbols (e.g., the use of “10$” as a GOTO destination).

Some assemblers, such as NASM provide flexible symbol management, letting programmers manage different namespaces, automatically calculate offsets within data structures, and assign labels that refer to literal values or the result of simple computations performed by the assembler. Labels can also be used to initialize constants and variables with relocatable addresses.

Assembly languages, like most other computer languages, allow comments to be added to program source code that will be ignored during assembly. Judicious commenting is essential in assembly language programs, as the meaning and purpose of a sequence of binary machine instructions can be difficult to determine. It should be noted that the “raw” (uncommented) assembly language generated by compilers or disassemblers is quite difficult to read when changes must be made.

 

You may also like...